

A DATA CONVERSION SUB-SYSTEM
FOR

AN IONOSPHERIC FORECAST SYSTEM

A Thesis
Presented to

The Department of Computer Engineering
San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Paulus Zegwaard
December 2004

Space Environment Technologies Technical Report TR2006-001

A DATA CONVERSION SUB-SYSTEM

FOR

AN IONOSPHERIC FORECAST SYSTEM

A Thesis
Presented to

The Department of Computer Engineering
San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Paulus Zegwaard
December 2004

© 2004
Paulus Zegwaard

ALL RIGHTS RESERVED

ABSTRACT

A DATA CONVERSION SUB-SYSTEM
FOR

AN IONOSPHERIC FORECAST SYSTEM
by Paulus Zegwaard

The data conversion subsystem of this thesis project is part of an Ionospheric
Forecast System (IFS). The forecast system employs a number of asynchronously linked
space-physics models that use and produce data in a variety of formats (usually simple
ASCII formats), which are expected to change relatively often.

This report describes a GUI web application that allows a model maintainer to
generate a definition for a changed ASCII file format very easily. This definition is then
used to generate Java classes dynamically, which convert ASCII files to data objects
(Java classes) or visa versa. The IFS stores the serialized data objects in a database to
bridge timing differences resulting from the asynchronous execution.

The chosen solution allows for a fast adaptation to changes in ASCII file format.
The dynamic loading of the conversion Java classes avoids a system restart in the case of
a changed file format.

ACKNOWLEDGMENTS

I would like to thank the people who made this project possible and enjoyable to
work on. I am very grateful that Dr. W. Kent Tobiska, President of Space Environment
Technologies, gave me the opportunity to work on this research project, which is a key
element in the development for the IFS. About more than halfway through the project he
had the insight that a small change in requirements would be a big improvement in the
final result. I'm glad he pointed out this somewhat subtle change in direction of the
project. The impact on the implementation was substantial and in hindsight it became
very clear that this made the result much more valuable and generic. Yes it was more
work, but real hacking is about throwing code away when a better solution becomes
obvious.

I would like to thank Dave Bouwer, Chief Engineer at Space Environment
Technologies, who helped me to understand the internals of the IFS and gave me
feedback on the day to day work. He also was inspirational and came up with ideas of
how to approach the implementation of the conversion system.

Last, but not least, I want to thank my professors at San Jose State University. In
particular I thank Dr. Lee Chang, my primary advisor, for encouraging me to take on this
project, staying out of my way when I needed the freedom to explore, and always being
right there when I needed his advise and support. I also thank Dr. Michael Robinson,
member of my thesis committee, who is a very good teacher and helped me to understand
some of the essential nitty-gritty details of computer engineering.

v

TABLE OF CONTENTS

1 Introduction...1
1.1 Objective and Project Scope...1
1.2 Deliverables..1
1.3 Report Overview...1
1.4 Background...1

1.4.1 Ionospheric Forecast System Forecasts Space Weather2
1.4.2 Ionospheric Forecast System (IFS) Functionality ...2
1.4.3 Design Challenges of the IFS...2
1.4.4 IFS Implementation Solutions..3
1.4.5 Four-tier Architecture of the IFS..4

1.5 Thesis Project Challenge...4
1.5.1 Data Formats Challenges...4

1.6 Proposed Solution...5
1.6.1 Requirements for Solutions..5
1.6.2 Vision of an Implementation..5

1.7 Motivation for Solutions...6
2 Methodology..7
2.1 Compatibility..7
2.2 Programming Environment...7
2.3 Software Development Model..8
2.4 Object Oriented Design and Design Patterns..8

2.4.1 Factory Pattern...8
2.4.2 Model-View Separation Principle..9

2.5 Resources..10
2.5.1 Software Resources..10
2.5.2 Hardware Resources...10

3 System Design...11
3.1 Concepts and Definitions..11

3.1.1 Client and Server Concept...11
3.1.2 Model and Data Concept..12
3.1.3 Responsibilities..12

3.2 Requirements..13
3.2.1 Use Cases for Conversion from Model Output to Data Suitcase.....................13
3.2.2 Use Cases for Conversion from Data Suitcase to Model Input.......................16
3.2.3 Nonfunctional Requirements...19

3.3 Architecture...21
3.3.2 Interaction between Sub-systems...23

3.4 Software Design..26
3.4.1 Data Design..26
3.4.2 GUI Web Application Design..31
3.4.3 Dynamic Class Loading...36
3.4.4 Conversion Code Design...39

3.6 Test Approach...46
3.6.1 Introduction..46

vi

3.6.2 Testing of Dynamic Generated Code...47
3.6.3 Test Cases..47
3.6.4 Test Sub-system Design...48

4 Implementation..50
4.1 The GUI System..50
4.2 The Conversion Code...50
4.3 Demo Extension to GUI System...52
4.4 Performance Experiments...52

4.4.1 Performance Overview...52
4.4.2 Comparisons..53
4.4.3 Results..53
4.4.4 Discussion..54

4.5 Test Suite..55
4.5.1 Test Coverage..55
4.5.2 Test Framework Implementation...56
4.5.3 Sequence of Execution for a Test Case..56

5 Conclusion...57
5.1 Remaining Issues ...57

5.1.1 The Project Related Issues...57
5.1.2 General Issues..58

5.2 Programming Language Choice..58
References...60

vii

LIST OF FIGURES

Figure 1: Simplified Overview of the IFS Architecture..5
Figure 2: Overview of Sub-systems..32
Figure 3: Overview of Sub-systems, Conversion Engines on Clients.............................34
Figure 4: Overview of Sub-systems, Conversion Engines on Central Server.................35
Figure 5: Example Snippet of an ASCII Input File...40
Figure 6: Sequence of Events of Input Wizard..50
Figure 7: Sequence of Events of Output Wizard...51
Figure 8: The Factory Does the Loading of the Class...53
Figure 9: The “Main” Program..54
Figure 10: The Dynamically Generated Class...55
Figure 11: Flow Diagram for Conversion Engine, File to Suitcase.................................56
Figure 12: Class Diagram for the File to Suitcase Conversion Engine...........................58
Figure 13: Flow Diagram for Conversion Engine, Suitcase to File.................................59
Figure 14: Class Diagram for the Suitcase to File Conversion Engine...........................61
Figure 15: Driver Program to Illustrate the Working of the Conversion Code...............71
Figure 16: Screen Shot of Memory and CPU Usage of the Performance Test................76
Figure 17: Example of a Different Type of ASCII File...83

viii

LIST OF TABLES

Table 1: Record Class Flags..45
Table 2: Bucket Class Flags..45
Table 3: Suitcase Class Flags..45
Table 4: Results of the Performance Tests..75

ix

1 Introduction

1.1 Objective and Project Scope
The goal of this thesis project will be the assessment of the scope and risks of the

proposed conversion sub-system, according to the criteria mentioned in section 1.6.1.
The work will involve building a prototype demonstrating the feasibility of the sub-
system, following the iterative development cycle in use by Space Environment
Technologies (SET), the principal developer of the Ionospheric Forecast System (IFS).

1.2 Deliverables
The project deliverables are:
1. Artifacts of all iterations and stages of the development process, such a

requirements document, Unified Modeling Language (UML) diagrams of the
design and a software specifications document, a test plan and an evaluation-
feedback document after an iteration

2. A functional prototype of the proposed sub-system
3. A final report combining all the important parts of the documentation

1.3 Report Overview
The following sections of this introduction chapter explain more about the

background of the IFS in terms of the design challenges and the chosen solutions to meet
these challenges. This chapter then continues with describing the problem topic of this
thesis project and the proposed solution.

The methodology is discussed in Chapter 2, subdivided into sections on
compatibility, programming environment, software development model, and object
oriented design. Chapter 3 covers the system design, with sections on requirements,
architecture, software design, and testing approach. In Chapter 4 the results are
discussed, covering the performance experimenting, the building of the GUI web
application, the prototype system, and the test suite.

1.4 Background
The Ionospheric Forecast System (IFS) is under development by a group of

organizations involved in developing space-physics models with Space Environment
Technologies (SET) in the role as primary systems developer.1 This section contains a
description of the functionality and system design challenges of the IFS, together with the
chosen solutions. It serves as a background in order to gain a better understanding of the
data conversion topic of this thesis project.

1 W. Kent Tobiska and Dave Bouwer, Sections 1.4 to 1.7 are a summary of personal communication
and internal SET documents, February 2004.

1

1.4.1 Ionospheric Forecast System Forecasts Space Weather
The IFS is, in popular terms, a space-weather forecast system. The colloquial

expression “space weather” is commonly used to describe the effects of solar radiation on
the Earth’s ionosphere and thermosphere. For example, space weather forecasts can be
used to improve satellite orbit and attitude estimation, HF radio propagation, and GPS
signal availability applications.

A more scientific description of “space weather” is “the shorter-term variable
impact of the Sun’s photons, solar wind particles, and interplanetary magnetic field upon
the Earth’s environment which can adversely affect technological systems.” It includes,
for example, the effects of solar coronal mass ejections, solar flares and irradiances, solar
and galactic energetic particles, as well as the solar wind, all of which affect Earth’s
magnetospheric particles and fields, geomagnetic and electrodynamical conditions,
radiation belts, aurorae, ionosphere, and the neutral thermosphere and mesosphere during
perturbed and quiet levels of solar activity.

1.4.2 Ionospheric Forecast System (IFS) Functionality
The ISF produces forecasts based on:
1. Real-time input data from SET, partner institutions, and third parties as well as

statistical climatology data sets.
2. Remote distributed clients executing space-physics models that use data and

produce numeric ionospheric forecasts. The models also use data from other
models as input.

Customers and client models will request data sets and the system will provide
data sets “Just-in-Time,” meaning that the data sets are the most recent and best
estimates. These data sets contain the parameters that form the actual forecasts.

1.4.3 Design Challenges of the IFS
The process of producing forecasts depends on a number of independent factors

that basically fall in one of two categories: factors with impact on the data
communication between geographical-distributed nodes in the system, and factors
influencing the data streams resulting from the execution of models and inter-related
models. If the system were implemented as synchronous end-to-end system of models
and data, the impact of a small-scale failure somewhere (communication latency or one of
the models failing), would result in a cascade of failures.

This is unacceptable for mission-critical operations. For that reason the design
philosophy has two important principles (described in more detail in the next section, IFS
Implementation Solutions): asynchronous execution of the models and ensuring an
uninterrupted data stream.

These design principles facilitate a system that results in a gradual degradation of
forecast accuracy in the event of data outages or latency. Because of this “graceful
degradation” design philosophy operators can respond in a timely fashion and avoid a
failure of the entire system.

2

1.4.4 IFS Implementation Solutions
The first design principle is implemented by asynchronously linked models (that

is, individual models run independently of each other and deposit their outputs to a
central database accessed by a central server that maintains the current state of all the data
sets and models). This results in models being less dependent on the performance of
other related models.

I’m the cop,
controlling
all trafficDatabase

Data Source

Customer

Model

Model

Central Server

Figure 1: Simplified Overview of the IFS Architecture.

Note that the design goal here is not archiving data, but that the database is used
to bridge timing differences resulting from asynchronous data handling and model
operations. In other words, the data sets needed by all the models and end-users are
retrieved and disseminated on a “Just-in-Time” basis, ensuring a particular validated data
set is the most recent.

Since data rapidly evolve from forecast, to “nowcast” (term used by SET), and
finally to historical status, there is also a need to add tags to the data sets that make it
possible to determine the state on the time line. One function of maintaining the temporal
state of a data object is to monitor the utility of the data. Subsequently, data need to be
validated at each state change, and in the event of invalid data, a “best-estimate” can be
used as a replacement.

The second design principle, an uninterrupted data flow, is implemented by
having a “second best” replacement data stream available at all times at the central
database. A primary stream is called the “A” stream, whereas the secondary stream is
labeled “B.”

The “A” data stream is the most accurate and the purpose of the “B” stream –
often based on statistical estimates based on historical climatology – is to ensure that

3

there is reasonable data available in case data from the “A” stream is not available. For
instance the "A" stream could be interrupted because of operational reasons, such as
network unavailability. The “B” stream is not as accurate and/or extensive as the “A”
stream, yet it is good enough to keep the models going. The models will still produce
valid data, although without the accuracy that the “A” stream would give.

Of course other, more traditional, ways of mitigating risks of system failure are
used as well, such as backup computers and independent network connections.

If errors occur, the system will report the error condition (possibly by sending
email), so that operational staff can undertake corrective actions.

1.4.5 Four-tier Architecture of the IFS
1. Database - The function of this database is to maintain all data objects and their

current state.
2. Client server - The client server maintains communication between models,

data, and end-users. This clear separation ensures systems security,
performance, robustness, extensibility, ease of use, and maintainability.

3. Compute engine - Because of the high performance and security requirements
of space-physics models, and because a number of models will be executing at
the same central location as the database server, compute engines located at
partner institutions comprise one of the tiers.

4. Clients and Customers - In this architecture, clients can be either remote
models or end-users (customers retrieving forecasts).

1.5 Thesis Project Challenge
The design choice in the IFS is to encapsulate the data within Java data classes

(data objects). One of the advantages of data objects over files is that a data object can
contain methods that operate on the data, such as methods that have the knowledge how
to validate the data set contained in the data object.

Different independent researchers, partners of SET, are developing the models
used in the IFS and each model has its own file format, which is expected to change since
development of the models is still an ongoing process. Imposing a single common data
format for all model input/output (I/O) instances is rather impractical. For that reason the
IFS designers envision a more flexible approach. The ideal design goal is to go beyond
static data standards for the models and create full data transparency. Creating a
conversion sub-system that can handle all the different formats in use and can be adapted
to changes fast and easy is probably the closest as one can get to the ideal of the design
goal. Researching the feasibility of such a conversion sub-system is where this thesis
project comes in.

1.5.1 Data Formats Challenges
Although data format standards are a useful approach, in practice they also impose

problems within the scientific community, such as manipulatibility and differences
between the output of a model and the input of another. Challenges in general, and

4

specific to this proposed thesis project, are summarized in section 1.5.1.1 and section
1.5.1.2.

1.5.1.1 General Challenges
1. As data standards evolved (for example FITS, net-CDF, and so on), they grew

more and more complex, and are often beyond the time constraints and
resources of many of the small scientific groups,

2. Individual researchers have neither the inclination nor resources to re-write all
their legacy software to meet the protocol of a standard (the vast majority of
scientific data is in simple ASCII formats specific to a particular model), and
this results in the growth of native formats for each model,

3. A logical format for one type of data (e.g., solar irradiances sorted by
wavelength) is clearly inappropriate for other formats (e.g., ionospheric
electron density data).

1.5.1.2 Specific Challenges
The space-weather sciences are rapidly evolving and so are the models used. That

means that data conversion requirements will often need to be adapted to changing model
I/O requirements. The question is who should do that? Is it the task of the scientist that
wrote the model and knows it intimately? Or does this job land on the plate of the
engineer that maintains the central server that integrates the unique models? Regardless
who is doing the job, what about tools to make it easier and faster?

1.6 Proposed Solution

1.6.1 Requirements for Solutions
A solution that solves these challenges requires software that:
1. Is easy to use for people with no specific programming skills. A basic

understanding of the model I/O file formats is necessary.
2. Can be quickly adapted to changing data formats (model input or output),
3. Supports the current formats used by the models and the data objects in the

IFS. However the formats need to be unambiguous enough to be processed by
a machine, in other words some requirements for the file format apply.

4. Is extendable, which means that new conversion functionality can be added
without rewriting/recompiling, the existing code by hand.

1.6.2 Vision of an Implementation
In terms of implementation, one of the tools is a GUI web application that can be

used to specify data format definitions. The GUI is designed to make it easy to define the
rules for a specific data format, not only ASCII file formats from the existing models, but
also changed or new data formats. A simple example of how the GUI front end is
envisioned is the way the Microsoft Excel wizard guides the user through the process of
importing an ASCII file into a spreadsheet. After processing the file with the GUI, the

5

input is then translated into a Data Definition Specification (DDS). Another component
of the system generates Java source code from the DDS, which code is then compiled.
Finally these new Java classes (performing the actual conversion) are dynamically loaded
into the system. This dynamic class loading allows for change in data format without
restarting the system.

The GUI system is a web application and the user only needs a browser to access
the web application. Thus a platform independent solution is easy to accomplish, since
the web application will be implemented in a platform independent way.

1.7 Motivation for Solutions
The two most important reasons for the choice of proposed solution is:
1. To avoid the burden of maintaining a hand-coded collection of conversion

classes. Maintenance by programmers is costly, time consuming, and can
potentially introduce new bugs.

2. To ensure a fast adaptation to changing formats.

6

2 Methodology

2.1 Compatibility
The SET developers have a preference for the Java platform as the glue that links

the models together. (Note: the models themselves are often written in other languages.
Java will be used to wrap these applications). For easy maintenance and use, the code
repository of the conversion sub-system should be located on a central server, such that
whatever server or client needs the conversion sub-system has a central place to check out
updated code. (Note: clients and servers that run the conversion sub-system can be
located on any Java capable platform). Secure connections are mandatory. Given the
context mentioned above, the Java virtual machine is the environment of choice, since it
is one of the solutions that is highly platform independent.

2.2 Programming Environment
The programming environment of choice is Java, however for certain

functionality Java is not the most productive language. Therefore Jython will be used in
combination with Java to act as middle-ware.

Jython is a pure Java implementation of Python, an object-oriented scripting or
programming language.2 Jython/Python is very extendable and has a remarkably clear
and powerful syntax, which is one reason for compact code. The type of objects in
Python is resolved at run time rather than at compile time. This eliminates the need for
type declarations and or type casts, which is another reason why coding Python is
relatively fast. Python is regarded as a language that boasts developer productivity
because of its powerful features. Mark Lutz, author of one of the leading Python books,
mentions that Python is a language that is designed rather than just accumulated; he says,
“…Python emphasizes concepts such as quality, productivity, portability, and
integration.”3

Jython adds the general Python features to the Java platform; it not only extends
Java with dynamic scripting, but also allows Java classes to be used inside the Jython
code. It is even possible to compile Jython code (classes) into Java class files, either by
sub-classing a Java class or by providing the method signatures needed for type resolution
at compile time. So real Java class files can be created, such as applets, servlets and
beans.

The GUI web application prototype is developed in Zope, a web application
framework written in Python.4 Given that Java is the platform for the middle ware tying
the IFS components together, that might come as a surprise.

However, the coupling between the GUI web application and the rest of the
system is relatively low, so the benefit of using Zope outweighs the change of
environment. One important reason to develop the GUI application in Zope is

2Jython Home Page, June 20, 2004, <http://www.jython.org/>, (July 3, 2004); Python Programming
Language, 2004, <http://www.python.org/>, (July 3, 2004).

3 Mark Lutz, Programmin Python, (Sebastopol: O’Reilly, 2001), 1.
4Zope, 2003, <http://www.zope.org/>, (July 3, 2004).

7

http://www.jython.org/

development speed. In general one can write Python code faster than Java code, which is
used in Java Server Pages (JSP).

2.3 Software Development Model
SET already uses an iterative software development model and in this project the

development is also done in the spirit of an iterative method. An iterative method is very
appropriate for a project like this because it supports feedback and adaptation, while also
allowing for adding features and improvements step by step.5

2.4 Object Oriented Design and Design Patterns
As many textbooks on modern software development teach, the core concepts of

Object Oriented Design (OOD) are encapsulation and information hiding, which facilitate
better software designs. OOD makes it easier to combine related functionality into a
component that interacts with the rest of the system through a well-defined and usually
simple interface. This technique endorses the kind of flexibility that makes changes
easier, not only for development but also for maintenance. These principles are referred
to as high coherence, which means that a component containing related functionality, and
low coupling, which refers to a simple interface between components.6

Another tool that is frequently used in OOD is a design pattern. Design patterns
have become well known from the book Design Patterns: Elements of Reusable Object-
oriented Software, in the computer science world also known as the “Gang of Four”
(GoF) design pattern book.7

In this project two design patterns play an important role in the design:
1. The factory pattern
2. The Model-View separation principle
Both patterns are discussed in the following sections.

2.4.1 Factory Pattern
In his book Java Design Patterns Cooper covers the classic GoF patterns from the

Java viewpoint and he describes the factory patterns as: “A simple Factory pattern returns
an instance of one of several possible classes depending on the data provided to it.”8

The conversion sub-system is built on this concept. Based on the kind of
conversion needed, class instances that together implement this conversion functionality
are created and loaded.

This pattern is chosen because it nicely de-couples the conversion component
from the main component of the program. The main component only needs to know how

5 Craig Larman, Applying UML Patterns: an Introduction to Object-oriented Analysis and Design and
the Unified Process, (Upper Saddle River: Prentice Hall, 2002), 14.

6 Bernd Bruegge and Allen H. Dutoit, Object-oriented Software Engineering:Conquering Complex
and Changing Systems, (Upper Saddle River: Prentice Hall, 2000), 174-175.

7 Erich Gamma et al., Design Patterns: Elements of Reusable Object-oriented Software, (Reading:
Addison-Wesley, 1995).

8 James W. Cooper, Java Design Patterns: a Tutorial, (Boston: Addison Wesley, 2000), 19.

8

to find and load the desired conversion component, it does not need to know anything
about how conversion is done.

The dynamic code generation that creates the classes for the conversion
component is not following a classic GoF design pattern, although one might consider the
way the code generation is used is a cousin of the GoF template method pattern. The
code generation indeed subclasses a base class and provides more functionality specific
for the task it is intended for. The difference with the usual situation is that normally a
programmer writes the subclass, while here another program does that job. However that
program follows a certain pattern, or in other words a template.

2.4.2 Model-View Separation Principle
The Model-View separation principle comes from the key concept of the Model

View Controller (MVC) pattern, which predates the book from the GoF.9 The concept of
MVC goes back to the mid-eighties and was initially closely related to the programming
language Smalltalk, especially the GUI components and in an article from before the GoF
book the MVC-Smalltalk relation is mentioned.10 But the authors don’t talk about MCV
as a design pattern, because the term design pattern apparently wasn’t coined until later.

The benefit of the Model-View separation principle is that changing one of the
components has little repercussions on the other component. For instance the screen
(View) can stay the same if a calculation method for data to be displayed in the screen
changes. The only thing that matters is that the format stays the same.

As mentioned earlier the GUI web application is developed in Zope, which makes
is relative easy to apply a Model View separation type of design. Zope’s design of the
Zope Page Templates (ZPT) encourages a low coupling between the business logic and
the presentation logic.11 The ZPT represent the View or the presentation logic and a ZPT
contains XHTML with special attributes that can call Python code, which represents the
Model or the business logic. The Python code does not need to know about how to
display its results, that is the task of the ZPT and, in turn, a ZPT does not need to know
how to create the results to display.

2.5 Resources

2.5.1 Software Resources
This project uses free available software:
1. A recent stable Java SDK from Sun, J2SDK 1.4.2_04 is the current version.12

9 Larman 2002, 471.
10 Emil F. Girczyc and Tai Ly, “Stem: an IC Design Environment Based on the Smalltalk Model-View-

Controller Construct”, Proceedings - 24th ACM/IEEE Design Automation Conference, 1987, IEEE, 757-
763.

11 Amos Latteier et al., The Zope Book (2.6 Edition), 2003,
<http://zope.org/Documentation/Books/ZopeBook/2_6Edition/ZopeBook-2_6.pdf>, (July 3, 2004), 128.

12 Java 2 Platform, Standard Edition (J2SE), 2004, <http://java.sun.com/j2se/>, (July 3, 2004).

9

2. Jython 2.1, an implementation of Python in Java, which is open source.13

3. A UML program, like ArgoUML v0.14, an open-source Java program.14

4. A Java Integrated Development Environment (IDE) like Jbuilder 9 personal
from Borland (available for Windows, Solaris and Linux) or Netbeans version
3.6, a Java application from Sun.15 Netbeans has also Jython support.

5. A recent version of SciTE, currently that is version 1.61, SciTE is a very
flexible open source programmers editor with simple IDE like features.16

Available for Unix (with X windows and GTK2) and Windows.
6. A recent version of Zope, currently Zope is at version 2.7.17 Zope is an open

source web application framework somewhat similar to JSP in functionality.

2.5.2 Hardware Resources
All hardware resources used for this project were already available:
1. Initially developing from home on a dual boot AMD Athlon system, which has

a Unix universe (well, actually Linux land) and a Windows world (2000).
Additionally using a laptop running Windows 2000 and Linux for developing
distributed components. Both machines are networked.

2. Using a remote web server (third party service provider) for developing the
GUI web application.

3. Deploying the prototype on a server running the IFS development project, a
Mac OS X server.

4. Utilizing a high speed internet connection.

13 Jython.
14 ArgoUML Project Home, 2003, <http://argouml.tigris.org/>, (July 3, 2004).
15 Jbuilder The Leading Development Solution for Java, 2004, < http://www.borland.com/jbuilder/

(July 3, 2004).
16 SciTE A Free Source Code Editor for Win32 and X, May 29, 2004,

<http://www.scintilla.org/SciTE.html>, (July 3, 2004).
17 Zope.

10

3 System Design
This chapter contains the system design.18 It only covers the parts of the system

that are directly related to the topic of this thesis project. The high level requirements
were rather clear from the beginning, but filling in the details turned out to be a search for
the best approach. During the project development it became clear that the initial
direction of the design and implementation of the system should be changed, and in
hindsight it was a change for the better. The requirements and the design presented here
are a reflection of these changed insights.

3.1 Concepts and Definitions
For a better understanding some concepts and definitions are given. Some of

them are rather generic, but some are more specific to this project and/or the IFS.

3.1.1 Client and Server Concept

3.1.1.1 Client Concept
A client in the IFS:
1. Is a stand-alone computer or virtual top-level process that interacts with the

central server.
2. Is responsible for executing a model, acquiring data, or disseminating data that

is related to a particular model or measurement.
3. Executes processes that can exist independently from the central server (for

instance in a test mode), but for operations must communicate with the server
for all data I/O (except when it has the key responsibility for acquiring data
from an instrument or separate data source).

4. Has a single point-of-contact (POC, for example a researcher) that is
responsible for the definitions, operations, and so forth.

5. Has a unique URL/IP address.
6. Has software that must be maintained (namely configuration and control

management) as part of the larger system.

3.1.1.2 Central Server Concept
The central server or “client server” handles all the data IO from and to the

database, that is the central server receives the data from the model output or third party
data and serves requests for data coming from models and end users.

3.1.1.3 Repository Sub-system
The repository sub-system serves as place for all centrally maintained code:
1. It is the place where to check for new DDS files and new dynamically

generated classes, depending on how the Conversion Engines are set up.

18 W. Kent Tobiska and Dave Bouwer, Specific information about the IFS in Chapter 3 is a summary of
personal communication and internal SET documents, February 2004.

11

2. It is also the place to check for client software and dynamic class generation
code.

3.1.1.4 Conversion Engine Concept
The conversion engine is responsible for the conversion between data suitcases

and model input/output or converts a data suitcase into an output file for an end user.

3.1.2 Model and Data Concept

3.1.2.1 Model and Acquired Data
A model:
1. Is the primary source for data files, together with data acquired from outside the

system (actual definitions).
2. Runs as a process on a client computer (remote) or on a compute engine

(local).

3.1.2.2 Data Suitcase
A data suitcase is:
1. An object used to store model data along with functionality to manipulate that

data,
2. A “self describing” entity,
3. An element of the internal data representation of the system.

3.1.2.3 Data Definition Specification (DDS)
A Data Definition Specification is a file that describes how source code can be

generated that converts to/from a structured ASCII file from/to a data suitcase. These
ASCII files are usually a model input file or output file or an external data source.

3.1.3 Responsibilities
In this section the role of “maintainer” is defined. Although the researcher that is

responsible for a particular model might perform this role, it is also possible that this role
sooner or later will be performed by one of the system administrators.

3.1.3.1 Maintainer Responsibility
The maintainer is responsible for queuing up sample ASCII files, to be used with

the GUI, and the maintainer operates the GUI in order to:
1. Define records, fields (intended definitions).
2. Specify validation criteria.
3. Document data.
4. Store the resulting DDS and code in the right place (Repository).

12

3.1.3.2 Central Server Responsibilities
The responsibility of the Central Server is to receive data from model I/O and to

create “Just-In-Time” output upon requests from clients, models or end users. To fulfill
these requests the central server needs the assistance of the conversion engines.

3.1.3.3 Repository Sub-system Responsibilities
The repository sub-system is responsible for the following tasks:
1. Facilitating the check on the availability of a new DDS.
2. Serving a DDS or a new dynamic class upon request.
3. Serving client software or new dynamic class generation code upon request.

3.2 Requirements
The requirements are expressed as narrative use cases. This form is chosen over

UML use case diagrams and function specifications because it is probably more
instructive.

3.2.1 Use Cases for Conversion from Model Output to Data Suitcase

3.2.1.1 Create Data Definition Specification (DDS) for Model Output
Conversion from the model output file into a data suitcase is the task of a

conversion engine. However since model output files are expected to change relatively
often, the conversion engines need to be flexible. This flexibility can be achieved by
dynamically creating pieces of the conversion software. The IFS GUI is meant to
facilitate the dynamic construction of conversion code by “translating” the structure in a
model data file in source code in a visual, “wizard like” way.

In order to build a data object from a model file the conversion software needs
information such as field names, beginning of the data table and delimiters used.

The idea is that the IFS GUI web application reads in the crucial parts of the file,
such as beginning of the file, and starts “asking questions”. The questions have a
suggested answer based on a guess. A guess can be made because the input file has some
structural patterns often used in IFS models output files.

After finishing the wizard, the user can perform a test to check validity of the
created data definitions and generated source code.

13

The use case for creating a DDS for model output is as follows:

Primary actor: GUI user (maintainer responsible for the maintenance of
the conversion DDS)

Stakeholders and
Interests:

GUI user, researcher, developers

Preconditions: The (changed) model is operational. The IFS GUI system
is available.
Researcher responsible for model has prepared a sample
ASCII file that is representative for the model’s output.

Main Success Scenario: 1. GUI user uses the IFS GUI sub-system with this valid
sample file to perform the following tasks:
1.1. Locates and defines the table header line in the

input file.
1.2. Adds, if desired, additional meta-data in the form

of tag-value pairs.
1.3. Specifies the field delimiters and or makes sure

the proper number of columns is set.
1.4. Defines field names and field types, indicates

which fields present in the sample file to include
in the data suitcase.

1.5. Specifies, if used, validation criteria such as
upper and lower boundaries.

1.6. Gives replacement values for “bad” records or
indicates that median values should be used.

2. User test the just created data definition specification
(DDS), see section 3.2.1.2.

3. User saves the DDS and conversion code in the
repository sub-system.

Post conditions: The new DDS and conversion code is available at the
repository sub-system.

Special Requirements: IFS GUI system is a web application, requiring only a
browser as client.

Issues: How to link the GUI system to the repository system.

3.2.1.2 Test Parser Code Created from a New DDS
Automation not only reduces work, but maybe its biggest value is the increased

reliability. Before allowing the generated code to be used, a test needs to be done. The
dynamic generation of parsing code also requires generating dynamic testing because
static testing would defeat the benefit of the dynamic creation of code.

14

The use case for testing the parser code generated from a new DDS:

Primary actor: System, back-end of GUI web application
Stakeholders and
Interests:

Researcher, developers

Preconditions: The GUI user has just created a new DDS from a sample
file.

Main Success Scenario: 1. GUI user clicks the “Test” button.
2. Conversion source code is generated.
3. Source code is compiled.
4. DDS file is generated.
5. Test files are generated (test input files and expected

values files).
6. The test suite is run, the test parses a test file and

creates a test data suitcase for each test case and this
suitcase is the tested against the expected values.

7. Test results are displayed on the GUI screen.
Post conditions: The GUI user is informed about the test results.
Special Requirements: None
Issues: None

3.2.1.3 Create New Data Object from a Model Output File
The ConversionEngine is envisioned as a sub-system that can be on the central

server or at the client that runs the model. The ConversionEngine is activated when a file
needs to be processed.

15

The use case for converting a file into a data suitcase:

Primary actor: System, ConversionEngine for input (file to data suitcase)
Stakeholders and
Interests:

Researcher, Developers

Preconditions: Model file is available.
Main Success Scenario: 1. The ConversionEngine checks for new conversion

code, if so download this code.
2. The ConversionEngine creates an instance of the

proper Parser class (Factory/Builder pattern and
dynamic class loading).

3. The Parser instance performs following tasks:
3.1. Parser add meta-data to data suitcase
3.2. Parser parses file and fills the with data while

validating data set.
4. ConversionEngine serializes and compressed data

suitcase.
5. Data suitcase is uploaded and stored in database.

Post conditions: Data suitcase is created and stored in database.
Special Requirements: None
Issues: How to link the ConversionEngine with the model.

3.2.2 Use Cases for Conversion from Data Suitcase to Model Input

3.2.2.1 Create DDS for Model Input or Client Request
This use case has two slightly different uses. One use is to create a DDS for

automated conversion of model input files. The other use is to provide end users with a
means to create a file from a data suitcase and determine the format by defining a DDS
themselves just for the occasion, or multiple occasions.

16

The use case for creating a DDS for model input is as follows:

Primary actor: GUI user (end user or maintainer responsible for the
maintenance of the conversion DDS)

Stakeholders and
Interests:

GUI user (maintainer or end user), developers

Preconditions: The IFS GUI system is available.
Main Success Scenario: 1. GUI user uses the GUI sub-system to perform the

following tasks:
1.1. Selects data suitcase type to build file from.
1.2. Indicates the mapping between columns of the

table in the file and fieldnames in the data
suitcase.

1.3. Adds, if desired, additional meta-data in the form
of tag-value pairs.

1.4. Specifies the field delimiters.
1.5. Specifies the print format of fields

2. User specifies validation criteria such as upper and
lower boundaries, if out of bound values needs to be
replaced.

3. User gives replacement values for out of bound values,
or indicates that median values should be used as
replacement values, in case replacement for out of
bound is used.

4. User test the just created data definition specification
(DDS), see section 3.2.2.2.

5. User saves the DDS and conversion code in the
repository sub-system.

Alternative flow:
Instead of saving the DDS in the repository, the DDS can
be used specifically for a request of a file by an end user.
The end user is in this case the one who creates the DDS
and from that DDS a one time FileGenerator class is
created and used to produce the file.

Post conditions: The new DDS and conversion code is available at the
repository sub-system.

Special Requirements: IFS GUI system is a web application, requiring only a
browser as client.

Issues: How to link the GUI system with the Repository system
and in case of the “end user” part of this use case, with the
Central Server.

3.2.2.2 Test File Generation Code Created from a New DDS
In a similar way as the use case in section 3.2.1.2 this use case covers the testing

from the IFS GUI sub-system:

17

Primary actor: System, back-end of GUI web application
Stakeholders and
Interests:

Researcher, developers

Preconditions: The GUI user has just created a new DDS from a sample
file.

Main Success Scenario: 1. GUI user clicks the “Test” button.
2. Conversion source code is generated.
3. Source code is compiled.
4. DDS file is generated.
5. Test files are generated (test input files and expected

values files).
6. The test suite is run, the test parses a test file and

creates a test data suitcase for each test case and this
suitcase is the tested against the expected values.

7. Test results are displayed on the GUI screen.
Post conditions: The GUI user is informed about the test results.
Special Requirements: None
Issues: None

3.2.2.3 Create New Model Input File from a Data Object
The ConversionEngine is envisioned as a sub-system that can be on the central

server or at the client that runs the model. The ConversionEngine is activated when a file
is requested.

The use case for converting a data suitcase into a file:

Primary actor: ConversionEngine
Stakeholders and
Interests:

Researcher, Developers

Preconditions: Data Object is available after request to central server.
Main Success Scenario: 1. The ConversionEngine creates an instance of the

proper FileGenerator class (Factory/Builder pattern
and dynamic class loading).

2. This FileGenerator generates the file from data
suitcase.

3. File is send to requesting client.
Post conditions: Requesting client acknowledges the receipt of the file
Special Requirements: None
Issues: How to link the ConversionEngine with the model

18

3.2.3 Nonfunctional Requirements

3.2.3.1 Requirements for the Input ASCII Files
To facilitate the model developers it is required that the ASCII file format is in a

sense “free form” with as little structure as possible. The bottom line is that the file must
be unambiguous enough in order to make parsing possible. The ASCII input file is also
the defining source for a data suitcase.

Therefore the structure in input file is required to facilitate the extraction of:
1. Meta-data (just as a string or set of strings is sufficient),
2. The field names,
3. The field values and obviously a way to tell one record apart from another.

Without defining the structure here, one possible way to structure the input file is
as follows:

1. Separate the meta-data with a table header from the actual table data, this table
header also contains the field names.

2. Use a delimiting character for the record, a new line character will do nicely.
3. Use a delimiting character for the fields like a space or tab character.

3.2.3.2 Performance Requirements
Although there is currently no strict performance requirement, it is important that

conversion related operations are done fast enough so the intended cadence of the model
execution cycles will not be disturbed.

3.2.3.3 Security Requirements
To facilitate reliable operation the network traffic is envisioned to happen over

secure channels. The local network is considered secure in this context.

3.2.3.4 Software Quality Attributes
Aside from correctness, maintainability, and reliability, here the flexibility in the

design is one of the most important attributes of the software design. Since the models
are under constant development, their input and output requirements will change over
time too. Design for change is one of the driving forces behind this part of the project.

3.2.3.5 Design for Change
Building for changes requires ease of update, which will be supported by central

code repositories. Also the design needs to be such that sub-systems can be easily linked
together, while maintaining a low level of coupling. The idea is to provide the sub-
systems with means to communicate with each other over network connections according
to standard protocols, which allows for flexibility regarding the physical location of the
sub-systems.

In short these core points are envisioned to facilitate a design for change:
1. A well defined but flexible internal format for data: data suitcases

19

2. A fast and easy procedure to adapt to changes in model I/O, the core topic of
this project

3. Central maintenance of code base

20

3.3 Architecture
The architecture of the IFS is envisioned as in the following diagram, Figure 2.

Figure 2: Overview of Sub-systems.

21

Database

Client running
a Model

file as output Central Server

Client running
a Model

file as input

Conversion
Engine
file to

data suitcase

Conversion
Engine

data suitcase
to file

Repository
sub-system

GUI back-end
web application

The architecture of the IFS consists of a number of subsystems:
1. The sub-systems that are basically outside the scope of this thesis project, such

as the database and compute engines (except that the compute engines are
clients running models and consume or produce data files), are not discussed
any further.

2. The “client server,” the server in the IFS setup that controls the I/O for the
database.

3. The back end of the GUI system, a web application server that generates DDS
files (and probably the Java source code) as output based on user input.
Normally these files are to be stored in the repository sub-system and used by
the conversion engines.

4. The repository sub-system containing the current DDS files and probably Java
source files. There is a choice here: either the dynamic classes are generated
centrally in the repository sub-system, or the generation of code is part of the
conversion engine itself. From the perspective of the conversion engine the
biggest difference is what to check for, a new DDS file (or possibly Java
source) or for a new class. One of the uses of the conversion engine is by an
end user creating a DDS (and conversion classes) for only one occasion. In
that case it looks more natural having the dynamic class generation code live
inside the conversion engine itself. However the conversion engines need to
check for two things, not only for a new DDS, but also for changes in the code
that performs the dynamic class generation.

5. The conversion engines, which are actually two sub-systems.

22

3.3.1 Interaction between Sub-systems
The conversion engines, the GUI back end, the repository sub-system and the

“client server” can potentially be on different server nodes in a network. One physical
layout of the sub-systems, Figure 3, shows conversion engines at clients’ location.

Figure 3: Overview of Sub-systems, Conversion Engines on Clients

23

Database

Client running
a Model

file as output Central Server

Client running
a Model

file as input

Conversion
Engine
file to

data suitcase

Conversion
Engine

data suitcase
to file

Repository
sub-system

GUI back-end
web application

Figure 4 centralizes everything except the clients, which can be remote.

Figure 4: Overview of Sub-systems, Conversion Engines on Central Server

If sub-systems are on different server nodes in a network, then there is a need to
decide on communication protocols between the sub-systems.

The flow of data in the IFS goes from/to models to/from the central server, with
conversion engines sitting in between the models and the central server, usually as a link
in an automated system allowing the following characteristics:

1. The conversion engine that creates a data object from a file is triggered as a
model or external data provider produces a file. So a file is received and a data

24

Database

Client running
a Model

file as output

Central Server

Client running
a Model

file as input

Conversion
Engine
file to

data suitcase

Conversion
Engine

data suitcase
to file

Repository
sub-system

GUI back-end
web application

object is sent. Since the data object is serialized and compressed, the data
object is essentially a file. Yet little more than moving files around is needed,
the conversion engine needs to do some query for a possible new DDS and/or
Java parsing code, so some form of message-passing is required.

2. The conversion engine that does the opposite action, data object to file, needs
basically the same functionality, since a data object coming out the database is
a serialized and compressed object in the form of a file. Here a message-
passing requirement also applies because a request for a data object will
probably be in the form of a SQL query in order to get the correct data object
converted.

The conversion engines need to be able to check for new DDS files and for
updates of the code that generate the dynamic classes (or only the dynamic Java classes
depending where the code generator lives), which is also exchanging files and messages.

Thus all the communication of the conversion engines boils down to message-
passing and the sending/receiving of files.

The GUI back end produces DDS files (and probably Java source files), which are
sent to the repository sub-system. And again some message-passing is needed to keep
track of what is happening.

The bottom line in all cases is that two things are needed:
1. For uploading and downloading of files a simple FTP or copy protocol will

suffice. Secure copy is preferred (SCP) if the link includes an insecure
network.

2. For the message-passing XML-RPC over HTTP (with SSL in case of an
insecure network) is suitable, XML-RPC (see section 4.2 for more details) is
universal, yet not very fast for passing around big chunks of data; a simple
(secure) copy is much faster for that purpose. In case both sides are Java
programs, (secure) RMI is an alternative too.

Although plain sockets can be used, it is rather tedious to implement and probably
not worth the gain in performance.

At this stage in the design no hard choices are made how to implement this
connectivity. The master daemon on the “client server” and the conversion engines are
intended to be a Java based implementations, thus the communication between them can
be any of the choices mentioned above. For communication between the conversion
engines and the models, things depend on the capabilities of the models and/or possibly
needed glue software.

There is another issue that needs attention. Which piece of the system is
responsible for starting the conversion? In the overall design the central server plays a
somewhat passive role (as usual for servers, waiting to fulfill requests) and only accepts
data output from models if it is presented and also only responds to requests for data. So
the conversion engines’ connection towards the central server is clear: the conversion
engines act as a client and initiate the connection. But what is the situation at the other
end? That depends on the model software. Do models just dump their output in a
directory? Then the conversion engine needs to be responsible for picking up the newly
produced files. This can be done by creating some wrapper code around the model and
make the wrapper responsible for the handling of the I/O files.

25

The models that need input from the system are most likely a little more active.
After all they need the input to work, so there will be some sort of mechanism to request
data.

In general the most natural situation would be that the conversion engines act as
servers towards the models, which possibly requires wrappers around the models.

The GUI back end is implemented in Zope/Python right now (see 3.4.2 for design
details). That means that RMI is not possible without some glue software that makes
RMI available as an external program. In Zope XML-RPC can be supported almost “out
of the box” and secure copy is also possible by calling an external program.

3.4 Software Design
This section covers the data design, the design of the GUI web application and the

conversion code.

3.4.1 Data Design

3.4.1.1 ASCII Input and Output Files
It is desirable to allow the ASCII input file format as “free form” as possible, but

still unambiguous enough to be able to parse the file. For that reason there are “hard
rules” and “desirable rules”.

Hard rules are:
1. The delimiter for the records in the data table must be one of the common

newline codes (UNIX: LF, Mac: CR, Windows: CR + LF), preferably the
platform newline (it is possible store the platform newline in the DDS, but that
is probably unnecessary).

2. The fields in the data table must either be separated by a unique delimiting
character (delimiter) or have a fixed field width.

3. When using a space as delimiter, the record still must be unambiguous, which
means that only the last field is allowed to have spaces.

4. There must be a line with the column headers for the table, where the column
headers follow the same rules for separating the fields in the table. However
there are spaces allowed in the field names since it is possible to accommodate
this ambiguity in the GUI web application.

Desirable rules:
1. Preferably use “whitespace” as delimiter, where whitespace is defined as one of

more tabs and/or one or more spaces. Note: there are definitions of whitepace
that include newlines, however newlines are excluded in this definition of
whitespace.

2. Preferably use a unique delimiter if the table in the file consists of delimited
fields.

3. Preferably avoid using spaces in the field names.
4. Preferably use a space between fields when using fixed width fields, although

fixed width strictly does not require a space between the fields, it does make
detecting the width of a column in the GUI web application much easier.

26

Note: currently this space is actually a requirement. An extension of the GUI
can make it a preference.

SOLAR2000 proxy table
RESEARCH GRADE V2.22/256E19

YYYY-DDD/hh:mm:ss DD-MMM-YYYY/hh:mm:ss Julian day F10.7 F-81 Ly-a Ly81
1948-001/12:00:00 01-JAN-1948/12:00:00 2432552.00000 200.5 165.2 5.32E+11 5.09E+11
1948-002/12:00:00 02-JAN-1948/12:00:00 2432553.00000 208.1 164.2 5.29E+11 5.09E+11
1948-003/12:00:00 03-JAN-1948/12:00:00 2432554.00000 179.3 163.1 5.24E+11 5.08E+11
1948-004/12:00:00 04-JAN-1948/12:00:00 2432555.00000 169.2 162.1 5.16E+11 5.07E+11

Note: the shaded area represents the table header; the area above the header is usually
meta-data and the area under the header is the table data.
Figure 5: Example Snippet of an ASCII Input File.

3.4.1.2 Data Definition Specification (DDS)
Based on the requirements for the input file mentioned in the previous section the

design of GUI web application was implemented. The DDS produced by the input
wizard contains the following information:

1. Properties of the data table, such as the header line text (needed to determine
the table start), the means of separating the fields (delimiter or fixed width).

2. The field properties, such as field name, type or format of the field, an upper
boundary value and a lower boundary value (if “out of bounds” is used, the
field is flagged as out of bound in the data suitcase). Other field properties
include a replacement value for “bad data”, and an indicator whether to include
or exclude the field in the data suitcase (date-time fields are always
automatically included, so these can be marked as excluded, otherwise they
will be redundant).

3. The date step size. This value determines the proper interval between the date-
time of each record.

4. A hash table object that holds meta-data added while creating the DDS, the
meta-data is stored as tag-value pairs, or key-value pairs in software
engineering parlance.

5. The bucket size. A bucket is a reasonable subset of the records in a data
suitcase.

6. A flag to determine whether the median value of the fields in the bucket is used
as the replacement value for a bad field value, like missing value or wrong
type. The other choice is to use the replacement values provided in the field
properties.

7. A flag that determines whether the boundary values of the fields in the data set
are checked or not checked for extreme values.

The DDS from the output wizard looks very similar. But of course now the
source is a data suitcase and the target is an ASCII output file.

Although the same kinds of properties are present, the function of the properties is
to help generate a file, not to parse one. The list is as follows:

27

1. Properties of the data table, such as the header line text (needed to write out the
column headers), the means of separating the fields (delimiter or fixed width).

2. The field properties, such as field name and type, as well as a format for
writing out the field. Other properties are an upper boundary value and a lower
boundary value and a replacement value. If boundary values are used, out of
bound values will be replace by the replacement values. Finally the field
properties have an indicator whether to include or exclude the field in the
output file. If desired a field can be included more than one time.

3. A hash table object that holds meta-data added while creating the DDS: the
meta-data is stored as tag-value pairs, or key-value pairs in software
engineering parlance.

4. A flag that indicates whether or not to include the meta-data stored in the
suitcase as well as a flag that indicates whether or not to include the meta-data
that was added to the suitcase at creation time.

5. A flag to determine whether the median value of the fields in the bucket is used
as the replacement value for a out of bound field value, like missing value or
wrong type. The other choice is to use the replace values provided in the field
properties.

6. A flag that determines whether the boundary values of the fields in the data set
are checked or not checked for extreme values.

3.4.1.3 Data Suitcase
Based on the findings that serialization in Java is an expensive operation, it makes

sense to make the serialization of a data suitcase a more layered operation (unless a
serialization implementation is found that is about 10 times faster then the standard
implementation). De-serialization does not seem to be as slow as serialization though.

After a discussion with the IFS development team, one of the developers came up
with an idea how to approach the layered structure of the data suitcase: use a set of
containers in a container. Or in IFS terminology, a data suitcase contains one or more
buckets, which contain records.

This design idea is detailed as follows:
1. There is a record class that holds the fields, such that fields are retrieved by

fieldname. The record class has also a set of indicators reflecting the validity
of each field and also a validation indicator for the record as a whole (one “out
of bounds” field = whole record marked as “out of bounds”, or mark the record
as having replacement values to replace “bad” values). Finally there is a
parameter that indicates the state of the date-time value, whether this record
represents a jump in the sequence or is normal.

2. There is a bucket class. The bucket holds certain time span’s (year, month,
day) worth of records, as well as similar validity indicators and date states as
the record class. The bucket has the median values of the records it contains
stored as a separate attribute.

3. There is a suitcase class. This class holds the field properties and the meta-data
as well as the buckets. The buckets are stored serialized (and can be
compressed) in the suitcase. The main reason for this is to allow fast querying

28

of the suitcase because for querying the data suitcase needs to be de-serialized,
but the buckets are untouched, they stay serialized. The suitcase has a method
that allows for extracting a subset of buckets wrapped in another suitcase but
only containing the subset. In this way it does not make any difference for the
conversion subsystem whether the consumer asks for one bucket, ten buckets
or all buckets. The conversion engine just sees a suitcase containing one or
more buckets.

3.4.1.4 Indicators for Data States
To evaluate the value of the data in a suitcase the suitcase contains indictors at all

levels. This way it isn’t necessary to drill down to the deepest layer if only “perfect” data
is acceptable. See Tables 1–3 on next page.

29

Tables 1–3 give the meaning of the various indicators (here called flags).

Table 1: Record Class Flags
These flags are attributes in the Record class.
Field validationFlag
1 = OK
2 = above upper boundary
3 = below lower boundary

Record validationFlag
1 = OK
2 = not used
3 = not used
4 = field values replaced
5 = at least one field out of bounds
6 = no bound check performed

Record dateFlag
1 = OK
2 = jump in date

Table 2: Bucket Class Flags
These flags are attributes in the Bucket class.
Bucket validationFlag
1 = OK
2 = not used
3 = not used
4 = at least one record with values replaced
5 = at least one record with fields out of bounds
6 = no bound check performed
7 = one or more records with flag 4 and one or more with flag 5/6
Bucket dateFlag
1 = OK
2 = at least one record with jump in date

Table 3: Suitcase Class Flags
These flags are attributes in the Suitcase class.
Bucket validationFlag
1 = OK
2 = not used
3 = not used
4 = at least one record with values

replaced
5 = at least one record with fields out of

bounds
6 = no bound check performed
7 = at least one record with flag 4 and

one with 5/6

Suitcase validationFlag
1 = OK
2 = not used
3 = not used
4 = at least one bucket with replaced record

values
5 = at least one bucket with fields out of

bounds
6 = no bound check performed
7 = at least one bucket with one record with

flag 4 and one with 5/6
Bucket dateFlag
1 = OK
2 = at least one record with jump in

date

Suitcase dateFlag
1 = OK
2 = at least one bucket with “jump date”

record

30

3.4.2 GUI Web Application Design
The GUI web application is created with the web application framework Zope.19

Zope is an object oriented framework and has a number of build in object types, such as
container objects (no surprise that they are called folders), file and image objects, Python
scripts and the Zope Page Templates (ZPT).20 Folders not only act as containers but also
form a name space. Web pages are composed out of the Zope objects and Zope renders
these objects in order to serve the content as web pages. These Zope objects are located
inside an object database and standard Zope objects cannot access the file system. Python
scripts inside Zope have restricted power too, no access to the eval function and no
regular expressions for instance.

However Zope is very extendable, in principle in three different ways:
1. The most powerful way is writing Python modules that inherit from important

Zope core classes in order to facilitate tight integration. These extension
modules (called Products in Zope terminology) can be used from Zope as if
they were just build-ins. Since the code of Products is located on the file
system, they can be written such that they can access the file system.

2. A much simpler way to extend Zope is the use of a so called External Method,
which has access to the file system. The actual code of an External Method
lives in a Python module (file) as a regular Python function. The only two
special things are:
2.1. The module needs to be in a specific directory inside Zope.
2.2. Inside the Zope object machinery there is an object that act as the

doorway to this External Method, just as an alias.
Interacting with other processes is limited. Standard Zope does not allow starting

a process from an external method. A work around is to use an XML-RPC client and
server, where the server runs the new processes. This is described in the section.4.3
Demo Extension to GUI System.

The two core elements from Zope that are used in this application are the Zope
Page Template (ZPT) and Python scripts. The ZPT's are the presentation layer and
Python takes care of the business logic.

ZPT's are valid HTML with additional attributes, which are used for interaction
with the Python scripts. Zope renders the ZPT's before sending the pages to the
requesting browser and during this rendering the instructions contained in the page
template attributes are executed.

Here is a snippet of example code in a ZPT:
<p tal:content="here/hello">Hello Example</p>

The tal:content="here/hello" attribute will replace the text “Hello
Example” with what the Python script hello returns. Assume the Python script hello
reads:

return "Hello World!"
Then after rendering the ZPT snippet above Zope will send <p>Hello

World!</p> to the browser.

19 Zope.
20 Python.

31

The URL "here/hello" is a way to indicate the name space (the here part),
which defaults to the container in which the ZPT lives (there is more to the name space
story but that is left out the discussion for now). Thus the Python script "hello" is
normally (normally, but not always) in the same folder as the ZPT.

Of course there are other tal keywords (tal is a actually a namespace) as well:
1. define, for defining a variable to be used inside the tag and nested tags
2. condition, a condition whether to render the tag or not
3. repeat, repeating a tag
4. content or replace, content is filling the tag’s content, replace replaces

the whole tag
5. attributes, setting attribute values of a tag
6. omit-tag, for omitting the tag in the output
Here is an example how to use ZPT's:

<html>
 <head>
 </head>
 <body>
 <table tal:define="mylist python:[1, 2, 3, 4, 5]">
 <tr tal:repeat="item mylist">
 <td>This is </td>

 <td tal:condition="python:item%2 == 0"
tal:attributes="bgcolor python:'FFFFC6'">
 <span tal:content="item"
tal:omit-tag="">#</td>
 <td tal:condition="python:item%2 != 0"
tal:attributes="bgcolor python:'FFFFFF'">
 <span tal:content="item"
tal:omit-tag="">#</td>

 </tr>
 </table>
 </body>
</html>

There is one new element in the template above, python: followed by a Python
expression, which shows that it is possible to use Python expression in ZPT's as well.

The rest shows the use of the tal keywords in a simple way. Although there are
two td tags for the number only one at a time is rendered because of the condition, the
even numbers render with a gray background, the odd numbers with a white background.
The span tag is only used to demonstrate the omit-tag.

The output of this rendered ZPT is:

32

This is 1
This is 2
This is 3
This is 4
This is 5

The GUI web application is structured as a wizard, a series of screens where on
each of them some value is set or a choice is made. Most of the installer programs on
Windows are examples of wizards. The MS Excel import wizard, used to import a table
from an ASCII file, was the inspiration for the wizards in this application.

The idea behind a wizard is to break down a more complex task into a set of
simpler sequential steps. At the end all the settings are done and in the case of these
wizards, the Data Definition Specification is complete and the Java source code can be
created.

The following two figures, Figure 6 and 7 show the sequence of events for the
input and output wizard.

33

Figure 6: Sequence of Events of Input Wizard

34

The sequence of events for the output wizard is shown in the Figure 7.

Figure 7: Sequence of Events of Output Wizard

35

3.4.3 Dynamic Class Loading
One of the key concepts of the conversion engines is that the conversion code,

specific for a particular type of an ASCII data file, is loaded at the moment that this code
(a class file) is needed. Even more important is that this class is unloaded if it is not
needed anymore. Its place is taken by another specialized class file. This behavior is
quite different from normal class loading in Java: the default class loader loads a class file
if this class is needed, but never unloads it.

The benefit of the dynamic class loading is that the conversion engine can be an
continuously running process and still handle all kind of files. The conversion process
just loads the appropriate class file, which is garbage collected when another class file
takes its place. See The Java Developers Almanac 1.4 companion web site.21

In order to use dynamic class (re)loading a few points are important.
1. The class to be loaded should not be on the class path, because in that case the

default class loader will not allow the class to be reloaded. The default class
loader will allow the user defined class loader to do its work only if it does not
know about the class to be loaded.

2. But that brings up another issue: if the class to be loaded is not on the class
path, its type is unknown and thus the class cannot referred to in the code. To
solve this problem the class to be loaded needs a base class and referring to the
newly loaded class happens by type casting to the base class.

21 Dynamically Reloading a Modified Class, 2002,
<http://javaalmanac.com/egs/java.lang/ReloadClass.html?l=rel>, (October 8, 2004).

36

http://javaalmanac.com/egs/java.lang/ReloadClass.html?l=rel

Figures 8 – 10 contain the source code for a dynamic class loader example that
illustrates the principle. The example consists of two normal classes and one dynamically
created and loaded class. First, in Figure 8, the class that is the “Factory”, the class that
does the dynamic loading.

Import java.io .*;
import java.lang .*;
import java.net .*;

public class Factory {
 private File file = new File("");
 private ClassLoader cl = null;
 public Factory (String path) {
 try {
 file = new File(path);
 URL url = file .toURL();
 URL[] urls = new URL[]{url };
 cl = new URLClassLoader(urls);
 } catch (Exception e) {
 System .out .println ("Exception in Factory constructor " + e);
 }
 }
 public MessengerBase getMessenger (String className) {
 Object o = null;
 try {
 o = (cl.loadClass(className)).newInstance();
 } catch (Exception e) {
 System .out .println ("Exception in getMessenger " + e);
 }
 return (MessengerBase) o;
 }
}
Figure 8: The Factory Does the Loading of the Class

37

Figure 9 is the “main” program that creates the dynamic class and the calls the
user defined loader 10 times.

import java.lang .*;
import java.io .*;

public class MyDynamicLoadTest {
 public void createNewClassFile(int i) throws IOException {
 String srcFile = "../Messenger.java";
 StringBuffer code = new StringBuffer ();
 code.append ("public class Messenger extends MessengerBase {\n");
 code.append (" private String s = \"Message number ");
 code.append ((new Integer (i)).toString () + "\"; \n");
 code.append (" public String message() {\n");
 code.append (" return s;\n }\n}\n");
 FileWriter outputFile = new FileWriter (srcFile);
 BufferedWriter out = new BufferedWriter (outputFile);
 out .write (code.toString () + "\n");
 out .close();
 Runtime .getRuntime ().exec("javac " + srcFile);
 }
 public static void main (String [] args) throws IOException ,
 ClassNotFoundException , InterruptedException {
 MyDynamicLoadTest test = new MyDynamicLoadTest ();
 int i = 0;
 while (i++ < 10) {
 test .createNewClassFile(i);
 Thread .sleep(3000); // sleep to make sure class is compiled
 // cast the new instance to the base class
 // the type of the actual loaded class unknown by the default class loader
 // note: the path is for the user loaded class is the parent directory
 // which is normally NOT on the class path
 MessengerBase m = new Factory ("..").getMessenger ("Messenger");
 // print the message from the newly created class
 System .out .println ((String) m .message());
 System .out .println ("=== = = = = = = = = = = = = = this was cycle " + i);
 }
 }
}
Figure 9: The “Main” Program

38

Finally Figure 10 illustrates the dynamically generated class. Note that the
number in the string “Message number 1” will change while the program runs, this string
is the “dynamic part” of this example.

public class Messenger extends MessengerBase {
 private String s = "Message number 1";
 public String message() {
 return s;
 }
}
Figure 10: The Dynamically Generated Class

3.4.4 Conversion Code Design
As discussed in the architecture section, the interfaces of the conversion engines

are still an undecided issue. This project focuses on the feasibility of the challenging
areas of the proposed solution, not on the completeness of it.

In the following sections the design of the conversion engines is covered in a
rather general way because of the fuzziness of the interfaces between the sub-systems.
Thus little attention in paid to the interfaces.

3.4.4.1 Conversion Engine File to Suitcase
The high-level flow diagram of this conversion engine that converts a file into a

data suitcase is according to Figure 11.

39

Figure 11: Flow Diagram for Conversion Engine, File to Suitcase

In the node “Parse file” of the diagram is where the most activity takes place.

40

These are the steps for parsing a file:
 1. Read the file line by line, add all lines above the table header to meta-data

attribute of suitcase. After the table header move to point 2.
 2. Read line by line and process lines of data.

 2.1. Split line in tokens and convert tokens to typed variables (the fields).
 2.1.1. If the field creation failed, try to repair the bad line.

 2.2. Check the validity of the date variable.
 2.3. Put the variables in a Record class and validate variables.
 2.4. Store record in a temporarily bucket (CollectorBucket).
 2.5. If this temporarily bucket is full, calculate median of values.
 2.6. Serialize the bucket and store in suitcase.

 3. Serialize last bucket and store in suitcase.
Step 1 to 2.1 happens in the dynamically created Parser class. The rest takes place

in the ParserBase class.
In Figure 12 the UML class diagram illustrates the relationships between the

classes of the file to suitcase conversion engine. This engine shares the Record class, the
Bucket class and the Suitcase class with the code of the suitcase to file conversion engine.

41

Figure 12: Class Diagram for the File to Suitcase Conversion Engine

42

3.4.4.2 Conversion Engine Suitcase to File
Figure 13 is a high level illustration of the conversion from suitcase to file.

Figure 13: Flow Diagram for Conversion Engine, Suitcase to File

43

The details of the “Generate file” step Figure 13 are as follows:
1. Get first bucket from data suitcase.

1.1. Loop until all buckets in suitcase processed.
1.1.1. Loop until all records in bucket are processed.

1.1.1.1. Compose properly formatted line.
1.1.1.2. Write line to file.
1.1.1.3. Get next record

1.2. Get next bucket from data suitcase.
All the steps mentioned above are happening in the FileGenerator class. This

conversion engine shares the Record class, the Bucket class and the Suitcase class with
the code of the file to suitcase conversion engine.

44

The class diagram for the suitcase to file conversion engine is in Figure 14.

Figure 14: Class Diagram for the Suitcase to File Conversion Engine

45

3.5 Test Approach
Since this project is about researching the feasibility of the proposed method of

data conversion, all testing effort is geared towards the testing of the dynamically
generated code. Testing code that does not change after it is written and before use is
easier to test and the methods are well understood and documented in literature about
testing.

3.5.1 Introduction
In software quality assurance it is understood that it is most likely impossible to

find all errors in a non-trivial piece of software. Often the goal of software quality is
considered to be customer satisfaction. It is considered best to approach testing with an
appropriate methodology to find as many errors as possible. Random testing, although it
is a methodology, isn’t a proper way of testing, something more sophisticated is needed.

The general practice of testing uses two ways of testing, black box and white box
testing.22

In black box testing the tester does not know about the internals of the code to be
tested, only about the functionality provided. There are two common methods for black
box testing:

1. Partitioning testing. In this method the input domain is divided into equivalent
partitions. The reasoning behind this is that two input values from the same
partition will likely give the comparable test results. Thus if input values from
all partitions are tested, it is likely that the whole input domain is adequately
covered.

2. Boundary value testing. In this method the boundaries of the input domain are
determined. It is common for software to behave more error prone on or close
to the boundaries of the input values then far away from these boundaries.
Thus it is likely that better coverage is achieved if testing of all boundaries is
done, including just inside and out side the boundary, as well as further away
from the boundary.

In white box (or glass box) testing the tester does know the internal structure of
the code. And as in black box testing the keyword is coverage. There is one obvious way
of white box testing: make sure each statement is at least executed once and that all
possible paths are taken. Testing all possible paths might be an almost impossible task in
some cases, so the following methods for white box testing are developed:

1. Statement coverage. Here the test cases are designed such that all statements
are executed at least once.

2. Branch coverage. Test cases are designed such that all branches in a condition
statement are taken at least once.

3. Path coverage. Since it might be impossible to take all possible path, this
method designs the test cases such that all independent paths are taken at least
once.

22 Jerry Z. Gao, H. -S. Jacob Tsao and Ye Wu, Testing and Quality Assurance for Component-based
Software, (Boston: Artech House, 2003), 119 – 154.

46

4. Loop coverage. In loop coverage the same kind of considerations as in black
box boundary testing play a role. Test cases are designed to test the extremes
and cases close to the extremes.

3.5.2 Testing of Dynamic Generated Code
Because of the dynamic code generation, the testing needs to be dynamic too.

Given the concept of the conversion sub-system, the testing should be automatically
performed as part of the creation of new conversion functionality. Automatic testing is
quite a challenge, however there is a pattern in the test cases because a data suitcase
always has one or more buckets and a bucket has one or more records.

Values that should be tested:
1. suitcase flags
2. suitcase flags after making a slice
3. suitcase, the bucket flags
4. record flags for a certain date
5. field flags for a certain date
6. field values for a certain date
Each new case, meaning new type of input file with a corresponding new DDS

and Java conversion code, and possibly a new data suitcase type, needs to be tested since
there is new code involved. That also means that the test case test file and test values
need to be created, based on the sample file that was used to generate the DDS.

In order to run test cases automatically two pieces of functionality are needed:
1. A test framework that compares the actual values of the data suitcase with the

expected values. This is the more common part: a test suite based on JUnit, or
in this project PyUnit (with Jython), is a common way to this.23 PyUnit is part
of the Python and Jython standard library and is located in the module
unittest.

2. A module that generates a test input files and corresponding expected values.
This is the challenging part since this is a non-trivial piece of software.

Test input files need to be prepared such that they will cause the conversion code
to produce certain values for field values and all the different flags. Thus the test
preparation system needs to take the input file (the sample used to generate the DDS) and
generate modified copies based on the values of the DDS.

3.5.3 Test Cases
There are several general cases that can occur, divided into two groups:
 1. Boundary check is not performed.

 1.1. Normal; everything is normal and as expected and flags indicate valid
data (and no bound check).

23 JUnit, Testing Resources for Extreme Programming, 2004, < http://www.junit.org/index.htm >,
(October 8, 2004); PyUnit - the Standard Unit Testing Framework for Python, 2004, <
http://pyunit.sourceforge.net/ >, (October 8, 2004).

47

 1.2. Date jump; a few “jump in date” cases, flags reflect that and the date
before “jump in date” does not exist (this corresponding line in the test file
was removed), and no bound check.

 1.3. Replace; a few garbage lines in the file.
 1.3.1. One case is one garbage line, this line will be replaced by the

replacement values from the DDS (or replacement values from the
median record values, which is currently not implemented); flags
indicate replaced values and no bound check performed.

 1.3.2. The other case is two or more consecutive garbage lines, which
cannot be replaced and will result in a “jump in date” case, and flags
will reflect jump in date (and no bound check).

 2. Boundary check is performed, the test file are prepared such that all values are
in bounds for the cases “Normal”, “Replace”, and “Date jump”. Only the test
file for the “Bound check” case has actual out of bound values.
 2.1. Normal; everything is normal and as expected and flags indicate valid

data (including a valid bound check).
 2.2. Date jump; a few “jump in date” cases, flags reflect that and the date

before “jump in date” does not exist (this corresponding line in the test file
was removed), and bound check indicates valid.

 2.3. Replace; a few garbage lines in the file.
 2.3.1. One case is one garbage line, this line will be replaced by the

replacement values from the DDS (or replacement values from the
median record values, which is currently not implemented); flags
indicate replaced values and bound check indicates valid.

 2.3.2. The other case is two or more consecutive garbage lines, which
cannot be replaced and will result in a “jump in date” case, and flags
will reflect jump in date (and a valid bound check).

 2.4. Bound check; Some of the test values are in bounds and some are out,
the expected values and flags reflect that. In this case the dates are all OK.

3.5.4 Test Sub-system Design
The test files are based on the DDS and the sample file. From these test files the

test data suitcases are generated (test data suitcases are output of the parser just created
from the DDS), as well as the expected values of the test cases.

The test file preparation has a number of steps:
1. Reading of the sample file and fixing out of bound values if out of bound

checking is set in the DDS.
2. Creation of a random set of records to test.
3. Preparation of the test input files such that the conditions to test are met in the

test input files, for example to test proper record replacement valid lines in the
test input file are replaced with “bad” lines. Or deleting one line in the test
input file creates a “jump in date”. At the same time the expected test values
files are prepared too, with the values corresponding to the test input files.

4. Creation of the files. The preparation is done in memory. After completion the
files are written to disk.

48

The test suite is rather straightforward, more a matter of implementation than
design. Using the PyUnit (as said, very similar to JUnit) framework and Jython, the test
suite class sets up each test by creating a data suitcase from the test input file and
continues with the actual tests, which are common assert equal tests.

49

4 Implementation
As already mentioned in Chapter 3 the implementation details in this chapter refer

to the latest state of the development. In some places comparisons with older stages of
the development are made for more insight in the why of choices.

Although this is the implementation chapter, it does not contain a lot of source
code. The reason is that the source code and the source code documentation are
proprietary.

4.1 The GUI System
ZPT's support two features that are use in this application:
1. Nesting ZPT's, meaning one template can include another.
2. Calling a ZPT (from a Python script) with a parameter.
That is how the wizards are implemented: a main template embeds or includes the

actual wizard screens (based on the screen number) and is called every time the “Next” or
“Back” button in the wizard is clicked. Since these buttons are part of a form, a form
variable (in the request object) with the current screen number is passed to the form
processing Python script. For the “Next” button this is the next script. This script does
some additional work if necessary, after which it increases the screen number and calls
the main template again with the next screen number. The main template includes the
next screen because that is the number it got passed in. The “Back” button works the
same way, but of course the back script decreases the screen number, so when the main
template is called it will include the previous screen.

In some screens there is a button to perform some action and returns to the same
screen, while the reloading of the screen reflects the changes made. Yet in most cases the
processing is done in between screen calls.

The HTTP protocol is stateless, which means that variables that need to be
remembered between screens need to be stored somewhere. Usually that happens either
by way of browser cookies or by way of hidden form variables. The web application
programmer does not need to worry about the low level mechanics, but can use session
variables and the effect is that these variables are “stored” somewhere. Usually session
variables are set to expire after a certain time.

Error checking is implemented where possible/reasonable. Overall the
implementation uses a prototype approach. A Zope connoisseur, sometimes referred to as
a “Zopista”, will probably acknowledge that a Zope Product approach would probably be
a more appropriate choice for a production solution.

4.2 The Conversion Code
For the implementation of the conversion code the goal was to minimize the

amount of dynamically generated code without compromising the execution speed.
Eventually the amount of dynamic code grew slightly in order to avoid some conditional
branches that would otherwise be executed for every line in the input file. Figure 15
shows a driver program that exercises the conversion code.
Import java.util .*;

50

import java.lang .*;
import java.io .

public class Driver {
 public Driver () {}
 public static void main (String [] args) throws IOException , ClassNotFoundException {
 int i = 0;
 String tmp = null ;
 String path_1 = "../version_1" ;
 String path_2 = "../version_2" ;
 while (i++ < 10) {
 System .out .println ("Cycle: " + i);
 System .out .println ("Parser path " + path_1);
 // get a parser instance; dynamic loading with user defined class loader
 ParserBase p = new ParserFactory (path_1).getParser("Parser");
 p.parseFile(path_1 + "/data.txt"); // parse file
 Suitcase s = (Suitcase) p.getContainer (); // get data suitcase
 // serialization, compression and then store in file
 Pickler pickle = new Pickler ();
 pickle .pickleGZIP(s, "pickle.gz");
 // now unpack and de­serialize
 s = (Suitcase) pickle .unPickleGZIP("pickle.gz");
 // print some of the suitcase’s properties
 System .out .println ("Bucket range: " + s.getBucketRange());
 System .out .println ("Field name and type: " + s.getFieldDefs ());
 System .out .println ("Suitcase validation flag: " + s.getValidationFlag ());
 System .out .println ("Suitcase date flag: " + s.getDateFlag());
 System .out .println ("File generator path " + path_2);
 // get a file generator instance; dynamic loading with user defined class loader
 FileGeneratorFactory fgFactory = new FileGeneratorFactory (path_2);
 FileGeneratorBase fg = fgFactory .getFileGenerator ("FileGenerator");
 fg .setSuitcase(s); // pass in the data suitcase
 fg .generateFile(path_2 + "/data.txt"); // generate an output file
 // swap the paths to start the alternative cycle
 tmp = path_1 ;
 path_1 = path_2 ;
 path_2 = tmp ;
 }
 }
}
Figure 15: Driver Program to Illustrate the Working of the Conversion Code

The driver program in Figure 15 cycles 10 times. Every cycle the parser and file
generator classes are dynamically loaded and the file created in the previous cycle is
processed.

4.3 Demo Extension to GUI System
In order to demonstrate actual conversion capability the input wizard of the GUI

system was extended with the capacity to generate a data suitcase from the sample file
that was used to create a DDS. In the same spirit the output wizard was complemented

51

with the capability to generate a file from the suitcase that was used for the output wizard
DDS.

It is not possible to start the execution of another process directly from standard
Zope, but Zope does support integrating an XML-RPC client therefore these extensions to
the GUI were implemented with help of an XML-RPC server.24

The following features characterize XML-RPC protocol:
1. Remote procedure calls in XML format over HTTP.
2. Libraries for many programming languages, usually easy to use.
3. Multiple data types, primitive types and strings as well as lists/arrays and hash

tables or dictionaries.
The XML-RPC server was implemented in Jython (in the same user space as

Zope), which made it possible to use the Python XML-RPC library as well as access the
Java conversion code. Using Jython/Python XML-RPC library is a lot easier then using
the Java XML-RPC library. On the client side, creating an XML-RPC client (in Python,
because the client lives inside the Zope realm) is extremely easy, just one line of code to
create the client object and another line to call a remote procedure.

4.4 Performance Experiments
Although there are no specific requirements for the performance of the conversion

sub-system, it is an important topic because it determines the cadence in which the IFS
can be run and/or how much hardware is needed to perform a certain cadence. In general
the conversion sub-system should be fast and have a small memory footprint when
running.

4.4.1 Performance Overview
Given the context of the choice to use Java because it features, the performance of

the Java code was compared to Python code because Python possesses much of the same
features that were the reasons to choose Java to build the system. It was already clear that
Java is rather slow as far as serialization is concerned. That prompted a preliminary test
to see how Python performed in that arena. The difference was rather dramatic, enough
to investigate this track further.

Since Java code was already available, a trial with the native GCJ compiler was
done. This was a rather disappointing exercise. For some strange reason the executable
was in the order of eight to ten times slower then the Java VM. The GCJ option was
dropped for further comparison.

4.4.2 Comparisons
Four sets of comparisons were made:
1. Comparing plain Java and plain Python, no attempts to enhancements.
2. Because date conversions happen for every line in a file (in both conversions)

the date conversions were calculated in advance and stored in hash tables,

24 XML-RPC Home Page, (UserLand Software, Inc: July 3, 2003),), <http://www.xmlrpc.com/>,
(October 8, 2004).

52

which were kept in memory for as long as the process was running. For both
Java and Python this was a significant speedup.

3. A variant of number 2, but this time the hash tables with the date conversions
were loaded from disk just before the conversion was done. The reason for this
was to see the trade off between memory footprint and execution speed.
Although the tables for this one test are not that big (2 MB), imagine having to
keep the tables for 20 different conversion set-ups in memory all the time, that
could become a mere 40 MB.

4. Finally two possible enhancements were tried, for Java that was the
uka.transport library from JavaParty that claimed faster serialization and for
Python it was Psyco, a just-in-time compiler.25 The JavaParty library was not
an improvement but Psyco showed some performance gain. The charm of
Psyco is that this gain was accomplished by installing the library and adding a
few lines of code, sort of instant result. One of the downsides of Psyco is that,
according to the web site, “It only runs on Intel 386-compatible processors
(under any OS) right now.”

4.4.3 Results
The conversion was done with a 1.4 MB data file. The file was converted

(Parsing) into a data suitcase, which was serialized and compressed into a file. Then this
data suitcase was unpacked again and converted back into a file (File generation). The
timing is in seconds and was calculated from the average of 10 runs. Table 4 shows the
results. While running, the process is the only active process (except some the normal
background processes) and takes almost all CPU time, usually more then 95%.

Table 4: Results of the Performance Tests

Set up Java - time in sec. Python - time in sec.
Processes use almost all CPU time. Parsing File generation Parsing File generation
1. No measurements for speed-up 6.52 7.24 5.99 7.57
2. Date conversion tables 4.98 3.53 5.26 2.40
3. Date tables loaded from disk 5.50 4.77 5.55 2.91
4. Java + JavaParty; Python + Psyco 9.98 5.23 4.81 2.51

There were three date conversion tables used: two of them were 637 kB in size
and one was 740 kB.

Figure 16 is a screen shot from the program top, which displays memory and CPU
usage for the processes running. Top is a Unix/Linux utility program. As the screen shot
shows, the Java performance test uses twice the amount of memory as the Python
process. The functionality of both programs is the same.

25 Bernhard Haumacher, Thomas Moschny and Michael Philippsen, Fast Object Serialization
uka.transport, November 3 2003, <http://www.ipd.uka.de/JavaParty/ukatransport.html>, (October 8, 2004);
Psyco - Home Page, July, 30 2004, < http://psyco.sourceforge.net/>, (October 8, 2004).

53

http://www.ipd.uka.de/JavaParty/ukatransport.html

The top two lines (under the black heading) show that the Java process uses twice as
much memory. Screen shot from the program top (Unix/Linux utility).
Figure 16: Screen Shot of Memory and CPU Usage of the Performance Test

4.4.4 Discussion
Without any extra actions in order to enhance the performance, it turns out that

Java and Python have similar speed performance. Although Python is very fast regarding
object serialization (an extension in the standard library implemented in C), this gain is
partly lost in other parts of the program.

Using date tables for date conversions proves to be a big performance gain,
especially for the file generation. If the date tables are loaded for each conversion run it
shows that Python does a faster job.

However the biggest difference between the two is the memory footprint of the
running processes. The Java process uses two times the amount of memory as the Python
process, while each uses about the same amount of CPU time.

With Java the ceiling of the memory is reached much earlier. That in itself might
not be a problem, nowadays the credo is “memory is cheap”. Compared to the salary of a
software engineer for one single day, 1 GB of memory can be considered cheap, labor is
usually the biggest cost factor. But this observation about the cost of labor points to the
direction of Python's biggest strength, which is programmer productivity. Whether

54

counted as lines of source code or the number of characters in the code, the count shows
that Java is more then three times as verbose, all aside from the personal observation that
Python is not as complex as Java. If it is true that a software engineer produces the same
amount of code regardless of the language, then it will be clear why Python should be
considered more seriously. This performance chapter shows that performance is not a
compelling reason to keep Python out the picture.

4.5 Test Suite
The implemented test suite is not complete, but complete enough to demonstrate

that the concept of generating tests dynamically is possible.

4.5.1 Test Coverage
Since the structure of the dynamically generated code is known, an assessment

can be made how well the white box coverage is. The test case “Replace”, where there
are “bad” lines in the input test file, exercises all statements and all independent paths.
With a small addition to the test file preparation this test case will also have complete
branch coverage. Due to the structure of the test file generation loop coverage (boundary
cases) is not complete. If desirable this could be solved with some additional test cases.

From a black box point of view, the input domain partitioning is covered, except
for some settings in the DDS. The test preparation code currently does not deal with
fixed width fields and neither does it calculate the median replacement values from the
valid records in a bucket.

Black box boundary value testing has incomplete coverage. The test preparation
code currently can only partly deal with one record per bucket (for instance bucket size =
one day, date step size = one day). However one bucket in a suitcase is handled properly.

There is another way to do black box partitioning. Input files have a meta-data
section (above the table header), a table header and a data section. The table header is
required, but strictly spoken a meta-data section or a data section is not required.

Thus the following black box partitions exists:
 1 A table header only (this is not very meaningful)
 2 Meta-data section plus table header
 3 Table header plus data section
 4 Meta-data section plus table header and data section

4.5.2 Test Framework Implementation
The code (in Python) to produce the test file sets (input files and corresponding

files with the expected test values) is integrated with the GUI system build in Zope.
Since it is a relatively big amount of code and this code needs to write to disk, it is
implemented as a module outside Zopes’s object database and accessed with an external
method. For the test to execute, Zope needs to start two external processes, the Java
compiler and the test runner. As already pointed out in the section about the demo
extension of the GUI system, it is not possible to start the execution of another process
directly from standard Zope: therefore the same client server approach is used. An XML-
RPC server compiles the Java code and runs the test suite. The results of running the test

55

suite are routed back to Zope and displayed in the browser. The XML-RPC server can
just run in the same user space as Zope. This solution is only used to circumvent the
limitation of starting a process from Zope.

The test suite is based on PyUnit/Jython. The benefit of this is that the “expected
values” file is generated as executable Jython code and loaded/executed by the test suite.
The downside is that it is sometimes a little tricky to get the assertEqual method to accept
two object as equal. Some conversion from Java to Python data types was necessary.

4.5.3 Sequence of Execution for a Test Case
Test case sequence:
1. Setup – create a suitcase from file
2. Test suitcase (flags, bucket range, meta-data, field definitions) – test date flag

and validation flag, test range, test both meta-data types and, field definitions,
all for suitcase and suitcase-slice (if any)

3. Test bucket flags – test date flag and validation flag
4. Test record (record flags, field flags, field values) – test a few records in each

bucket for record flags, field flags, field values

56

5 Conclusion
This project started with a number of desired features for the IFS:
1. A visual wizard to assist in defining the structure of the input file such that

based on that information automatic conversion from input file to data suitcase
would be possible. Also conversion the other way, suitcase to file, should be
possible.

2. An implementation of the visual wizard that ideally only requires standard
software by the user, such as a web based solution accessible with a standards
compliant graphical browser.

3. Allowing the input files to be as “free form” as possible, just unambiguous
enough to make automatic conversion possible.

The results of the project show that it is possible to:
1. Create a method for automatic conversion of input files based on a DDS file.

Conversion the other way is possible too. Note that so far only one type of
input file in use by the IFS is covered, although this file type is very common.
Future work needs to address the other types of files.

2. Create usable GUI wizards implemented as a web application and based on
HTML, cookies and javascript only. This setup does not require anything other
then a standard browser as the user client program.

3. Define the input file format requirements and strike a balance between “free
form” and the necessary minimal structure.

The project generated some added bonuses related to the core work:
1. A better understanding of how to structure the data suitcases.
2. Possibilities for performance improvements of the conversion code if

performance turns out to be a concern.

5.1 Remaining Issues
The remaining issues are divided into two categories:
1. Issues directly related to the topic of the project
2. Issues regarding the general system design

5.1.1 The Project Related Issues
The project-related issues are about the handling of other types of files, such as

ASCII files with a very different structure and binary files.
Binary files are usually well defined and require a conversion approach specific

for the type of binary file. However, with an extension to the conversion engines, it is
possible to handle binary as just a glob of data and store it in a data suitcase without
conversion.

To handle ASCII files with a different basic structure, it is necessary to define the
rules for the basic structure of a new type of ASCII files. A design for an additional GUI
extension is then based on these basic rules. A simple example of a different type of
ASCII file is given in Figure 17. The approach here would be to split the line in the part

57

before the colon and the part after the colon. The first part and the second part are then
stored as a key-value pair.

Flux Density Values in sfu for 2300 on 2004:03:27

Julian Day Number : 02453092.458

Carrington Rotation Number : 002014.731

Observed Flux Density : 000128.4

Flux Density Adjusted for 1 A.U.: 000127.9

URSI Series D Flux (Adj. x 0.9) : 000115.1
Figure 17: Example of a Different Type of ASCII File.

5.1.2 General Issues
General issues:
 1 In section 3.3.1 is already discussed that there are currently no firm decisions

made regarding the interfaces between sub-systems. Reviewing (and possibly
changing) the design of the data suitcase is another item on the list. Before the
IFS is ready as a production system, these issues need to be addressed.

 2 Another area that needs exploration is the handling of errors in case they
occur. Errors usually translate to exceptions in the code. How are exceptions
handled? There are potentially two extremes: one extreme is to handle all
exceptions at one central point and the other extreme is to handle all
exceptions at the point where they occur. A sensible approach most likely
depends on the situation and probably should follow the responsibilities. That
is, if a user (end user or model) is responsible for a certain task and is able to
deal with a problem, then the exception should be handled at that level.
However, if the responsibility is at the system administration level then the
exception need to trigger an event that notifies the system administration.

5.2 Programming Language Choice
The core of the IFS is composed out of a number of models, written in IDL (IDL

is a programming language and stands for Interactive Data Language, not to be confused
with CORBA IDL, which stands for Interface Definition Language) and legacy code such
as Fortran. Java (with help from Jython) is envisioned as the glue that turns the collection
of models into a system. An important consideration to choose Java is platform
independence, although Java does not really shine as a glue language. Java shares the
feature of platform independence with other languages such as Perl and Python. And as
the experiments regarding performance show, performance is not a reason to leave
Python out of the picture. Although Perl is rather popular, it does not have the clean

58

syntax and design that Python has. Because Python is so well designed, projects in
Python are known to scale well to bigger systems.

Python programs are, in general, much smaller and faster to write then their Java
counter parts and for that reason Python is probably better suited to act as a glue
language.

It is my opinion, since the IFS system is in a relatively early stage of development,
that the primary developers should reconsider the choice for Java.

59

References
ArgoUML Project Home, 2003, <http://argouml.tigris.org/>, (July 3, 2004).

Bruegge, Bernd and Allen H. Dutoit. Object-oriented Software Engineering: Conquering
Complex and Changing Systems. Upper Saddle River: Prentice Hall, 2000.

Cooper, James W. Java Design Patterns: a Tutorial. Boston: Addison Wesley, 2000).

Dynamically Reloading a Modified Class. 2002,
<http://javaalmanac.com/egs/java.lang/ReloadClass.html?l=rel>, (October 8, 2004).

Gamma, Erich et al. Design Patterns: Elements of Reusable Object-oriented Software.
Reading: Addison-Wesley, 1995.

Gao, Jerry Z., H. -S. Jacob Tsao and Ye Wu. Testing and Quality Assurance for
Component-based Software. Boston: Artech House, 2003).

Girczyc, Emil F. and Tai Ly, “Stem: an IC Design Environment Based on the Smalltalk
Model-View-Controller Construct”, Proceedings - 24th ACM/IEEE Design
Automation Conference. 1987, IEEE, 757-763.

Haumacher, Bernhard, Thomas Moschny and Michael Philippsen. Fast Object
Serialization uka.transport. November 3 2003,
<http://www.ipd.uka.de/JavaParty/ukatransport.html>, (October 8, 2004).

Java 2 Platform, Standard Edition (J2SE), 2004, <http://java.sun.com/j2se/>,
(July 3, 2004).

Jbuilder The Leading Development Solution for Java. 2004,
<http://www.borland.com/jbuilder/>, (July 3, 2004).

JUnit, Testing Resources for Extreme Programming. 2004,
<http://www.junit.org/index.htm >, (October 8, 2004).

Jython Home Page. June 20, 2004, <http://www.jython.org/>, (July 3, 2004).

Larman, Craig. Applying UML Patterns: an Introduction to Object-oriented Analysis and
Design and the Unified Process. Upper Saddle River: Prentice Hall, 2002.

Latteier, Amos et al. The Zope Book (2.6 Edition). 2003,
<http://zope.org/Documentation/Books/ZopeBook/2_6Edition/ZopeBook-2_6.pdf>,
(July 3, 2004).

Lutz, Mark. Programmin Python. Sebastopol: O’Reilly, 2001.

Psyco - Home Page. July 30, 2004, <http://psyco.sourceforge.net/>, (October 8, 2004).

60

http://www.borland.com/jbuilder/

Python Programming Language. 2004, <http://www.python.org/>, (July 3, 2004).

PyUnit - the Standard Unit Testing Framework for Python. 2004,
<http://pyunit.sourceforge.net/ >, (October 8, 2004).

SciTE A Free Source Code Editor for Win32 and X, May 29, 2004,
<http://www.scintilla.org/SciTE.html>, (July 3, 2004).

Tobiska, W. Kent and Dave Bouwer, Sections 1.4 to 1.6 are a summary of personal
communication and internal SET documents, February 2004.

― ― ―, Specific information about the IFS in Chapters 3 are a summary of personal
communication and internal SET documents, February 2004
XML-RPC Home Page. UserLand Software, Inc, July 3, 2003,

<http://www.xmlrpc.com/>, (October 8, 2004).

Zope. 2003, <http://www.zope.org/>, (July 3, 2004).

61

	1 Introduction
	1.1 Objective and Project Scope
	1.2 Deliverables
	1.3 Report Overview
	1.4 Background
	1.4.1 Ionospheric Forecast System Forecasts Space Weather
	1.4.2 Ionospheric Forecast System (IFS) Functionality
	1.4.3 Design Challenges of the IFS
	1.4.4 IFS Implementation Solutions
	1.4.5 Four-tier Architecture of the IFS

	1.5 Thesis Project Challenge
	1.5.1 Data Formats Challenges
	1.5.1.1General Challenges
	1.5.1.2Specific Challenges

	1.6 Proposed Solution
	1.6.1 Requirements for Solutions
	1.6.2 Vision of an Implementation

	1.7 Motivation for Solutions

	2 Methodology
	2.1 Compatibility
	2.2 Programming Environment
	2.3 Software Development Model
	2.4 Object Oriented Design and Design Patterns
	2.4.1 Factory Pattern
	2.4.2 Model-View Separation Principle

	2.5 Resources
	2.5.1 Software Resources
	2.5.2 Hardware Resources

	3 System Design
	3.1 Concepts and Definitions
	3.1.1 Client and Server Concept
	3.1.1.1Client Concept
	3.1.1.2Central Server Concept
	3.1.1.3Repository Sub-system
	3.1.1.4Conversion Engine Concept

	3.1.2 Model and Data Concept
	3.1.2.1Model and Acquired Data
	3.1.2.2Data Suitcase
	3.1.2.3Data Definition Specification (DDS)

	3.1.3 Responsibilities
	3.1.3.1Maintainer Responsibility
	3.1.3.2Central Server Responsibilities
	3.1.3.3Repository Sub-system Responsibilities

	3.2 Requirements
	3.2.1 Use Cases for Conversion from Model Output to Data Suitcase
	3.2.1.1Create Data Definition Specification (DDS) for Model Output
	3.2.1.2Test Parser Code Created from a New DDS
	3.2.1.3Create New Data Object from a Model Output File

	3.2.2 Use Cases for Conversion from Data Suitcase to Model Input
	3.2.2.1Create DDS for Model Input or Client Request
	3.2.2.2Test File Generation Code Created from a New DDS
	3.2.2.3Create New Model Input File from a Data Object

	3.2.3 Nonfunctional Requirements
	3.2.3.1Requirements for the Input ASCII Files
	3.2.3.2Performance Requirements
	3.2.3.3Security Requirements
	3.2.3.4Software Quality Attributes
	3.2.3.5Design for Change

	3.3 Architecture
	3.3.1 Interaction between Sub-systems

	3.4 Software Design
	3.4.1 Data Design
	3.4.1.1ASCII Input and Output Files
	3.4.1.2Data Definition Specification (DDS)
	3.4.1.3Data Suitcase
	3.4.1.4Indicators for Data States

	3.4.2 GUI Web Application Design
	3.4.3 Dynamic Class Loading
	3.4.4 Conversion Code Design
	3.4.4.1Conversion Engine File to Suitcase
	3.4.4.2Conversion Engine Suitcase to File

	3.5 Test Approach
	3.5.1 Introduction
	3.5.2 Testing of Dynamic Generated Code
	3.5.3 Test Cases
	3.5.4 Test Sub-system Design

	4 Implementation
	4.1 The GUI System
	4.2 The Conversion Code
	4.3 Demo Extension to GUI System
	4.4 Performance Experiments
	4.4.1 Performance Overview
	4.4.2 Comparisons
	4.4.3 Results
	4.4.4 Discussion

	4.5 Test Suite
	4.5.1 Test Coverage
	4.5.2 Test Framework Implementation
	4.5.3 Sequence of Execution for a Test Case

	5 Conclusion
	5.1 Remaining Issues
	5.1.1 The Project Related Issues
	5.1.2 General Issues

	5.2 Programming Language Choice

